Facile fabrication of microfluidic systems using electron beam lithography.

نویسندگان

  • Prashant Mali
  • Aniruddh Sarkar
  • Rakesh Lal
چکیده

We present two fast and generic methods for the fabrication of polymeric microfluidic systems using electron beam lithography: one that employs spatially varying electron-beam energy to expose to different depths a negative electron-beam resist, and another that employs a spatially varying electron-beam dose to differentially expose a bi-layer resist structure. Using these methods, we demonstrate the fabrication of various microfluidic unit structures such as microchannels of a range of geometries and also other more complex structures such as a synthetic gel and a chaotic mixer. These are made without using any separate bonding or sacrificial layer patterning and etching steps. The schemes are inherently simple and scalable, afford high resolution without compromising on speed and allow post CMOS fabrication of microfluidics. We expect them to prove very useful for the rapid prototyping of complete integrated micro/nanofluidic systems with sense and control electronics fabricated by upstream processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Microfabrication Using Emulsion Mask Grayscale Photolithography Technique

Recently, the rapid development of technology such as biochips, microfluidic, micro-optical devices and micro-electromechanical-systems (MEMS) demands the capability to create complex design of three-dimensional (3D) microstructures. In order to create 3D microstructures, the traditional photolithography process often requires multiple photomasks to form 3D pattern from several stacked photores...

متن کامل

Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

BACKGROUND Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have ...

متن کامل

An ice lithography instrument.

We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM ele...

متن کامل

Fabrication of high-density nanostructures by electron beam lithography*

We demonstrate a fabrication method to define high-density, uniform nanostructures by electron beam lithography at conventional beam voltages ~,40 kV!. Here we optimize the exposure and development conditions needed to generate such nanostructure arrays using polymethylmethacrylate as positive resist and isopropyl alcohol as a developer. Arrays of 12 nm dots with 25 nm period and 20 nm lines wi...

متن کامل

Repetitive Hole-Mask Colloidal Lithography for the Fabrication of Large-Area Low-Cost Plasmonic Multishape Single-Layer Metasurfaces

Nanostructuring for tailored optical functionality suffers from a lack of methods for large-area and low-cost fabrication. While electron beam lithography allows different complex shapes to be deposited onto the same substrate layer, the writing process is sequential and the fabrication is very expensive. Large-area methods, such as nanosphere lithography, [ 1 ] colloidal lithography using shad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2006